Groupby Certain Number Of Rows Pandas
I have a dataframe with let's say 2 columns: dates and doubles  2017-05-01   2.5  2017-05-02   3.5  ...          ...  2017-05-17   0.2  2017-05-18   2.5  Now I would like to do a g
Solution 1:
I guess you are looking for resample. consider this dataframe
rng = pd.date_range('2017-05-01', periods=18, freq='D')
num = np.random.randint(5,size = 18)
df = pd.DataFrame({'date': rng, 'val': num})
df.resample('6D', on = 'date').sum().reset_index()
will return
dateval02017-05-01  1412017-05-07  1122017-05-13  16Solution 2:
This is alternative solution using groupby range of length of the dataframe.
Two columns using agg
df.groupby(np.arange(len(df))//6).agg(lambda x: {'date': x.date.iloc[0], 
                                                 'value': x.value.sum()})
Multiple columns you can use first (or last) for date and sum for other columns.
group = df.groupby(np.arange(len(df))//6)
pd.concat((group['date'].first(), 
           group[[c for c in df.columns if c != 'date']].sum()), axis=1)
Post a Comment for "Groupby Certain Number Of Rows Pandas"