Mask Out Specific Values From An Array
Example:  I have an array: array([[1, 2, 0, 3, 4],        [0, 4, 2, 1, 3],        [4, 3, 2, 0, 1],        [4, 2, 3, 0, 1],        [1, 0, 2, 3, 4],        [4, 3, 2, 0, 1]], dtype=in
Solution 1:
Use np.in1d that gives us a flattened mask of such matching occurrences and then reshape back to input array shape for the desired output, like so -
np.in1d(a,[2,3]).reshape(a.shape)
Note that we need to feed in the numbers to be searched as a list or an array.
Sample run -
In [5]: a
Out[5]: 
array([[1, 2, 0, 3, 4],
       [0, 4, 2, 1, 3],
       [4, 3, 2, 0, 1],
       [4, 2, 3, 0, 1],
       [1, 0, 2, 3, 4],
       [4, 3, 2, 0, 1]])
In [6]: np.in1d(a,[2,3]).reshape(a.shape)
Out[6]: 
array([[False,  True, False,  True, False],
       [False, False,  True, False,  True],
       [False,  True,  True, False, False],
       [False,  True,  True, False, False],
       [False, False,  True,  True, False],
       [False,  True,  True, False, False]], dtype=bool)
2018 Edition : numpy.isin
Use NumPy built-in np.isin (introduced in 1.13.0) that keeps the shape and hence doesn't require us to reshape afterwards -
In [153]: np.isin(a,[2,3])
Out[153]: 
array([[False,  True, False,  True, False],
       [False, False,  True, False,  True],
       [False,  True,  True, False, False],
       [False,  True,  True, False, False],
       [False, False,  True,  True, False],
       [False,  True,  True, False, False]])
Solution 2:
In [965]: np.any([x==i for i in (2,3)],axis=0)
Out[965]: 
array([[False,  True, False,  True, False],
       [False, False,  True, False,  True],
       [False,  True,  True, False, False],
       [False,  True,  True, False, False],
       [False, False,  True,  True, False],
       [False,  True,  True, False, False]], dtype=bool)
This does iterate, but if the (2,3) set is small (relative to the size of x) this is relatively fast. In fact for small arr2, np.in1d does this:
        mask = np.zeros(len(ar1), dtype=np.bool)
        for a in ar2:
            mask |= (ar1 == a)
Making a masked array from this:
In [970]: np.ma.MaskedArray(x,mask)
Out[970]: 
masked_array(data =
 [[1 -- 0 -- 4]
 [0 4 -- 1 --]
 [4 -- -- 0 1]
 [4 -- -- 0 1]
 [1 0 -- -- 4]
 [4 -- -- 0 1]],
             mask =
 [[False  True False  True False]
 [False False  True False  True]
 [False  True  True False False]
 [False  True  True False False]
 [False False  True  True False]
 [False  True  True False False]],
       fill_value = 999999)
Solution 3:
There might be simpler ways than this. But this can be one way:
import numpy as np
a = np.array([[1, 2, 0, 3, 4],
       [0, 4, 2, 1, 3],
       [4, 3, 2, 0, 1],
       [4, 2, 3, 0, 1],
       [1, 0, 2, 3, 4],
       [4, 3, 2, 0, 1]], dtype=np.int64)
f = np.vectorize(lambda x: x in {2,3})
print f(a)
Output:
[[False  True False  True False]
 [False False  True False  True]
 [False  True  True False False]
 [False  True  True False False]
 [False False  True  True False]
 [False  True  True False False]]
Post a Comment for "Mask Out Specific Values From An Array"